Tag Archives: Currents

Lesson Plan (Grades 9-12): Go with the Flow – Designing Ocean Drifters

This fun and creative lesson plan teaches students how researchers use oceanographic instruments called drifters to study ocean currents and then has them design and build a drifter of their own. The lesson typically spans five class periods (three for building, one for presentation, and one for testing). The lesson plan includes background information, a complete materials list, and a grading rubric.

“Go with the Flow: Designing Ocean Drifters” originally appeared in the Deep-C Multidisciplinary High School Curriculum and has been updated with the design process used to create the CARTHE Drifter.

A free downloadable copy of Go with the Flow: Designing Ocean Drifters is available here.

Visit the CARTHE website to learn more about their research.

How Grad Student Bodner Uses Theoretical Math to Add Turbulence to Transport Predictions

6595a
Abigail Bodner, a Ph.D student at Brown University, observes surface waves in Plymouth, Massachusetts with her son Micah. (Photo by Eyal Guzi)

Predicting where oil will go can be one of the most challenging aspects of marine oil spill response. Following Deepwater Horizon, research showed that strong currents capable of transporting oil often appear along ocean fronts (the interface between river like-water masses that have different temperatures, salinities, or densities). However, our limited understanding about ocean front formation and the influence of turbulence, upper ocean mixing, and submesoscale currents (which can cause floating material to cluster and then spread out) inhibits the accuracy of ocean transport prediction models. Abigail Bodner uses mathematical theory and large eddy simulation (LES) models to improve our understanding about how different turbulence and mixing processes affect the behavior and development of ocean fronts.

Abigail is a Ph.D. student with Brown University’s Department of Earth, Environmental, and Planetary Sciences and a GoMRI Scholar with the Consortium for Advanced Research on Transport of Hydrocarbons in the Environment III (CARTHE-III).

Her Path

6595b
Ph.D. student Abigail Bodner created this visualization depicting a theoretical ocean front with an along-front current (associated with surface transport) and cross-front circulation (bringing light water over dense). Red indicates a less buoyant front; blue indicates a more buoyant front. The front is shown to become infinitely thin, which is the theoretical prediction if turbulence is not included. (Provided by Abigail Bodner)

Abigail grew up in Israel, where she taught and tutored high school math before pursuing theoretical mathematics at Tel Aviv University. Although she enjoyed her studies, she felt like something was missing. She added earth sciences as a second major and fell in love with atmospheric and oceanic fluid dynamics, which allowed her to use mathematical tools to describe natural phenomena. She completed an atmospheric dynamics master’s degree at Tel Aviv University, where she researched how large-scale atmospheric circulation patterns can cause blocking events associated with temperature fluxes for certain topographies.

Although her master’s research focused heavily on theoretical models, its applications extended to pressing environmental concerns such as heat waves and harsh cold winters. Abigail felt motivated to find a physical oceanography doctoral program that would allow her to combine theory and modeling for research addressing environmental impacts. A professor working with Dr. Baylor Fox-Kemper at Brown University recommended that Abigail contact Fox-Kemper related to his research adapting LES modeling for float, tracer, and surfactant applications.

6595c
Abigail Bodner, a Ph.D. student at Brown University, attended the 2017 summer school course “Fundamental Aspects of Turbulent Flows in Climate Dynamics” at the L’École de Physique des Houches in Les Houches, France. (Photo by Bar Guzi)

“After contacting Dr. Fox-Kemper, he responded within minutes, and we set up a Skype meeting where he told me all about the Gulf of Mexico Research Initiative,” Abigail said. “I was eager to be part of a larger research community working hard to help protect Gulf of Mexico ecosystems and coastal communities from environmental disasters.” She joined Dr. Fox-Kemper’s research group as a Ph.D. student, while also working towards a second master’s degree in applied mathematics.

Her Work

Abigail’s research started with paper, a pencil, and mathematical theory. She knew that previous research established a numerical theory that describes general ocean front dynamics but also knew that it lacked turbulence parameters. She modified the theory to include her hand-written equations that account for submesoscale (typically 102 – 104 meters in length and lasting hours to days in time scales)    turbulence and then consulted a numerical computer program to solve the higher-level equations. As she used numerical methods to resolve the modified theoretical equations, she noticed an interesting pattern: turbulence from vertical mixing processes appeared to strengthen the front, while turbulence from horizontal mixing processes appeared to weaken it.

6595d
Ph.D. student Abigail Bodner (center) and Research Assistant Laura Messier (right) helps undergraduate student Daniel Gates (left) measure Narraganset Bay water properties during a Save the Bay cruise for Brown University’s Summer@Brown course “Studying the Ocean from the Classroom to the Bay”. (Photo by Jenna Pearson)

“It’s important to note that whether this pattern is true or not in a more realistic environment isn’t clear because the theory is very idealized. Factors like waves, wind, and cooling and heating can all be very chaotic, and in order to apply them cleanly in the theory you have to simplify them,” explained Abigail. “By distinguishing them into horizontal and vertical processes, we’re able to quantify their roles in affecting the front. But, if we really want to understand what they are doing, then we need a model like the LES that can simulate each of these processes.”

Abigail is validating her modified theory using a LES developed by Dr. Fox-Kemper and his collaborators (Dr. Jim McWilliams, University of California Los Angeles; Dr. Peter Sullivan, National Center for Atmospheric Research; and Dr. Luke Van Roekel, Los Alamos National Laboratory). She incorporates as many missing parameters as possible into the simulation and compares its results with the results of her modified theory.

Abigail explained that, while LES can help validate her numerical theory, her theory can also help researchers understand the LES results. “My theoretical equation can give us a road map of how to interpret these large eddy simulations. It can help us understand what is happening with the vertical and horizontal processes by stripping away their complexity and presenting them in a more-simplified world,” she said. “If we look at the LES’s more-complicated scenarios but still have in mind what we know happens under simpler conditions, it can provide clarity and help us be more focused when we analyze these complex simulations.”

6595e
Ph.D. student Abigail Bodner teaches students about climate models during Brown University’s Summer@Brown course “Studying the Ocean from the Classroom to the Bay”. (Photo by Jenna Pearson)

Abigail plans to implement her theory into global climate models as an improved submesoscale parameterization that contributes to more accurate climate model predictions. Climate models use submesoscales to help determine the depth of the ocean mixed layer (the uppermost ocean layer), which helps define how the atmosphere and ocean will interact. Abigail explained that her two-year-old son is her greatest source of motivation to help enhance climate models. “Looking forward at climate predictions, it is hard to imagine what kind of world my son and future generations will have,” she said. “Being part of climate research is exciting, but it also comes with a sense of obligation to improve our current understanding of the climate system, including climate theory and predictions.”

Her Learning

Dr. Fox-Kemper has been a constant support and motivator for Abigail and has helped her strengthen her writing and communication skills. She further honed these skills teaching oceanography and climate science courses through Brown University’s Summer@Brown program.

6595f
Ph.D. student Abigail Bodner (front, left) and the Fox-Kemper research group at Brown University celebrate former graduate student Qing Li’s successful thesis defense. (Provided by Abigail Bodner)

Working with Dr. Fox-Kemper taught Abigail that she must dig deep to gain a more complete understanding of a scenario’s underlying physics while also connecting with bigger picture questions, existing literature, and community interests. Abigail’s experiences helped her gain a deeper appreciation for the scientific and peer-review processes involved in publishing. “[In research], you don’t always end up doing what you set out to do, but the result will probably be more interesting than anyone could have anticipated. It is exciting and confusing, which is part of what makes it so great,” said Abigail. “It is inspiring to be part of a community that cares deeply about the science as well as the coastal communities and ecosystems, which is what brings the GoMRI community together.”

Her Future

Abigail hopes to find a postdoc position that includes teaching and research where she can connect science to people’s lives, especially research related to sea level rise and its effects on coastal communities. She encourages students considering a scientific career not to feel intimidated by unfamiliar terminology. “It’s important to remember that, although it may be a slow learning curve, eventually you will learn how to use these terms yourself,” she said. “Have confidence in yourself, and don’t be afraid to ask for help. Most everyone will be excited to discuss their work with new students. You just need to work up the courage to ask. No question is a dumb question!”

Praise for Abigail

Dr. Fox-Kemper praised Abigail’s sharp mathematical mind. He recalled that initially she was more comfortable manipulating equations than interpreting data but quickly grew into an astute data analyst. “She is very quick to appreciate the significance of subtleties between different approaches to solving problems and has developed some new methods to address problems that have stumped theoreticians for decades – as well as finding some new problems of her own!” he said.

Dr. Fox-Kemper expressed admiration for Abigail’s ability to balance family and work, a feat he says was often difficult for him. “She keeps making progress on research and finding time to take opportunities to teach [while also spending time with her family],” he said. “She is a great role model for her kids and for other students thinking about becoming parents.”

The GoMRI community embraces bright and dedicated students like Abigail Bodner and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals. Visit the CARTHE website to learn more about their work.

By Stephanie Ellis and Nilde Maggie Dannreuther. Contact sellis@ngi.msstate.edu for questions or comments.

************

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit https://gulfresearchinitiative.org/.

© Copyright 2010-2019 Gulf of Mexico Research Initiative (GoMRI) – All Rights Reserved. Redistribution is encouraged with acknowledgement to the Gulf of Mexico Research Initiative (GoMRI). Please credit images and/or videos as done in each article. Questions? Contact web-content editor Nilde “Maggie” Dannreuther, Northern Gulf Institute, Mississippi State University (maggied@ngi.msstate.edu).

Smithsonian Highlights Technology that Tracks the Ocean’s Flow

6547
Guillaume Novelli (L) releases a Phatom 4 pro drone from the RV Walton Smith while Cedric Guigand (R) operates the flight controls during the CARTHE SPLASH experiment. High-resolution cameras on the drone collected aerial observations of floating bamboo drift plates and fast-evolving fronts at 1 meter – 200 meters scales. Photo by Tamay Ozgokmen, University of Miami Rosenstiel School of Marine and Atmospheric Science.

Many factors affect how the ocean moves, and it is especially difficult to know exactly how it will behave in a specific area, as was evident with challenges in predicting oil transport during Deepwater Horizon. The Smithsonian’s Ocean Portal published an article that describes tools scientists use to track currents on and just beneath the ocean’s surface, such as drifters, autonomous underwater vehicles, planes, and video equipment attached to ship-tethered balloons and drones.

Read the article Five Methods For Tracking The Ocean’s Motion featuring the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). Their research is helping us learn more about how currents and waves move water and floating material (such as spilled oil and plastics).

Read these related stories:

By Nilde Maggie Dannreuther. Contact maggied@ngi.msstate.edu with questions or comments.

************

GoMRI and the Smithsonian have a partnership to enhance oil spill science content on the Ocean Portal website.

The GoMRI is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies.  An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research.  All research data, findings and publications will be made publicly available.  The program was established through a $500 million financial commitment from BP.  For more information, visit https://gulfresearchinitiative.org/.

© Copyright 2010-2019 Gulf of Mexico Research Initiative (GoMRI) – All Rights Reserved. Redistribution is encouraged with acknowledgement to the Gulf of Mexico Research Initiative (GoMRI). Please credit images and/or videos as done in each article. Questions? Contact web-content editor Nilde “Maggie” Dannreuther, Northern Gulf Institute, Mississippi State University (maggied@ngi.msstate.edu).

Grad Student Lodise Deconstructs Drifter Velocities to Understand How Wind Influences Currents

6486a
John Lodise releases a drifter during a BayDrift experiment near the Rosenstiel School campus. (Photo credit: Diana Udel)

Many ocean forecast models treat the upper 1 meter of the water column, which plays a central role in ocean material transport, as a single layer. However, recent research shows that currents act differently at various depths within this meter.

The use of ocean drifters is the oldest way to measure currents, and recent design advances are providing more detailed and accurate ocean current data than ever. John Lodise analyzes data from these improved drifters to observe near-surface currents at multiple depths and explores how wind-driven velocities influence them. “If we know exactly how the wind is going to affect surface currents, then we can analyze forecasted wind and wave conditions to better predict the movement of surface currents and the pollution being transported by them,” he said.

John is a Ph.D. student with the University of Miami’s Rosenstiel School of Marine and Atmospheric Science and a GoMRI Scholar with Consortium for Advanced Research on Transport of Hydrocarbon in the Environment II (CARTHE II).

His Path

6486b
John Lodise deploys a drifter in Gulf of Mexico during the LASER experiment, January 2016. (Provided by John Lodise)

John grew up on Long Island, New York where the ocean was part of his life through fishing, beach trips, and surfing. John, as an undergraduate at the University of Delaware, explored scientific fields related to ocean science and ultimately chose physical oceanography. “Being able to understand the movement and circulation of the ocean is so important to solving many of today’s environmental issues,” he said. “I thought physical oceanography was an avenue where I could really make a contribution to the current scientific understanding.” He graduated in 2015 with a Bachelor’s degree in environmental science and concentrations in atmospheric science and physical oceanography.

While researching potential graduate programs, John was immediately impressed and motivated by the CARTHE research taking place at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science. He applied to the program and accepted a position in Dr. Tamay Özgökmen’s ocean sciences lab, where researchers are conducting studies on ocean transport of floating material such as Deepwater Horizon oil. “I’ve always felt a connection to the ocean, and with that comes an obligation to try and protect it and all the resources it provides,” said John. “What’s most important for me is being part of a community that’s actively working towards protecting oceans, beaches, the ecosystems that exist there, and oceanic resources that humans depend on.”

His Work

6486c
John Lodise helps a drone piloted by Dr. Dan Carson take off from a small boat in the Gulf of Mexico during the SPLASH experiment. Drones were used to take photos and videos of drift cards deployed by scientists to track surface currents. (Provided by John Lodise)

John deconstructs surface currents using data from drifters deployed during the Lagrangian Submesoscale Experiment (LASER), which used a fully-coupled atmosphere-wave-ocean model to calculate the physical variables involved in currents. John first applies the Lagrangian Variational Analysis (LAVA) tool to estimate velocity fields in the study region when wind and wave action is minimal. Doing so allows him to capture the underlying circulation patterns not driven by wind and waves. He then analyzes how drifter velocity changes when wind and wave activity increase and defines the total surface current into separate components driven by wind, waves, and underlying circulation patterns.

Drifters used during LASER had drogues (an attached flexible tether with sensing instruments that collected data 60 cm below the surface); however, a significant number of them lost their drogues due to bad weather and only collected data 5 cm below the surface. John assesses data from drifters with and without drogues to calculate wind-driven currents at these different depths. “The ocean surface is very difficult to sample, but it’s where buoyant pollutants like oil reside,” he said. “Including data from undrogued drifters, which sit right at the surface, can provide needed insight into this area.”

6486d
John Lodise practices piloting a drone in preparation for the SPLASH experiment. (Provided by John Lodise)

So far, John has observed that wind and wave forcing caused significant changes in water column velocity as his calculations neared the ocean surface, consistent with recent CARTHE studies (Laxague et.al., 2017 and Haza et al., 2018). Undrogued drifters traveled approximately 1.5 times faster than drogued drifters due to wind and wave influence. Furthermore, while wind-driven currents are known to travel to the right of the wind direction, he observed that currents deeper in the water column traveled further to the right than shallower currents.

John plans to investigate if convergence zones transport or hold surface debris between different water masses and how large wind and wave events change the structure of existing ocean currents and what happens after the wind and waves subside. He also plans to compare LASER data with data collected during the Grand Lagrangian Deployment (GLAD) and Submesoscale Processes and Lagrangian Analysis on the Shelf (SPLASH) experiments to explore how factors such as seasonality and regional effects influence surface drifter transport.

His Learning

6486e
John Lodise releases drift cards near the Rosenstiel School campus for the BayDrift experiment, which studies pollution transport pathways off the coast of Miami and south Florida. (Photo credit: Diana Udel)

Working with Dr. Özgökmen provided John the opportunity to participate in major Gulf of Mexico field experiments that used technologies such as GPS-equipped ocean drifters, drones, planes, and satellites to measure ocean currents. He gained experience assembling and deploying drifters during the LASER project and took part in small boat operations, drifter deployments, and drone experiments during SPLASH. Prior to these large field experiments, there were months of preparation and collaboration. “It was an amazing experience being out on the Gulf of Mexico, living aboard a ship, and building and deploying ocean drifters with the whole scientific team,” he said. “Being part of this large group of scientists working towards a common goal was not only a lot of fun but also made me proud to be part of the CARTHE group and work on the leading edge of oceanography.”

His Future

6486f
CARTHE team members after completing a BayDrift experiment. (L-R) Laura Bracken, Simge Bilgen, Matt Grossi, Cedric Guigand, Guillaume Novelli, and John Lodise. (Provided by John Lodise)

John plans to seek a position at a university, government agency, or private environmental agency after completing his Ph.D. and hopes to continue his current research path. “The career I’ve chosen has given me amazing opportunities to travel while conducting and presenting my research,” he said. “I love the work that I do.”

Praise for John

Dr. Özgökmen praised John’s work with the consortium’s LASER and SPLASH experiments, which provided data to John’s ongoing Ph.D. research. He explained, “[Our research] is a very special project, facilitating collaboration at an unprecedented level and duration across oceanographic sciences and communities.”

6486g
John Lodise presents his research at the 2017 Gulf of Mexico Oil Spill and Ecosystem Science conference in New Orleans, Louisiana. (Provided by John Lodise)

The GoMRI community embraces bright and dedicated students like John Lodise and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals. Visit the consortia website to learn more about their work.

By Stephanie Ellis and Nilde Maggie Dannreuther. Contact sellis@ngi.msstate.edu for questions or comments.

************

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit https://gulfresearchinitiative.org/.

© Copyright 2010-2019 Gulf of Mexico Research Initiative (GoMRI) – All Rights Reserved. Redistribution is encouraged with acknowledgement to the Gulf of Mexico Research Initiative (GoMRI). Please credit images and/or videos as done in each article. Questions? Contact web-content editor Nilde “Maggie” Dannreuther, Northern Gulf Institute, Mississippi State University (maggied@ngi.msstate.edu).

Grad Student Pearson Resolves Statistical Conflict in Submesoscale Ocean Processes

6480a
Jenna conducts a rotating tank experiment to illustrate Ekman dynamics for the Summer@Brown course “Studying the Ocean from Blackboards to Drones.” (Photo by Abigail Bodner)

Ocean models that utilize surface drifter data can provide oil spill responders with important information about the floating oil’s direction and speed as it moves along the ocean surface. However, surface drifters, like the floating material they represent, tend to cluster along strong fronts and eddies. This clustering can result in important consequences for surface drifter turbulence and transport data at smaller scales. Jenna Pearson is investigating the extent that material clustering impacts the accuracy of turbulence calculations and searching for potential factors or processes involved.

Jenna is a Ph.D. student with Brown University’s Department of Earth, Environmental and Planetary Sciences and a GoMRI Scholar with the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment II (CARTHE II).

Her Path

6480b
Jenna (front), Henry Chang (left), and Andrew Smith (right) prepare to launch drift cards and then aerially observe them using a drone during the SPLASH experiment. (Photo by Brodie Pearson)

Jenna developed her scientific interests as an undergraduate student at Northeastern Illinois University. While working as a math tutor, she decided to major in Mathematics after a pre-calculus professor encouraged her to pursue it as a career. She added Earth Science as a second major after serving as an Army National Guard medic in Iraq during her undergraduate studies. “I was only deployed for about a year, but I was a medic for eight years in total,” she said. “I transitioned from being a medic to a math and science major because there were more tools at my disposal to help global populations, rather than just treating a handful of individuals at a time.”

Jenna gained experience using math and science to solve larger problems through summer research programs. She participated in the 2013 Harvard School of Public Health Summer Program in Epidemiology with Dr. Alkes Price, where she used statistical methods to infer consistency across genetic variants associated with increased Type II Diabetes risk. The following year, she spent two summer months with Dr. Bjorn Sandstede at Brown University’s Division of Applied Mathematics, where she modeled microscopic and macroscopic traffic flow. While there, she learned about various tools used for modeling dynamic systems and how to apply data assimilation schemes.

During her summer at Brown University, Jenna met with Dr. Baylor Fox-Kemper who felt that her skillset would fit well with his CARTHE research, and she joined his team as a Ph.D. student in 2015. “The transition to CARTHE-related work was natural because of my desire to look at environmental problems,” said Jenna. “My summer research at Brown involved incorporating Eulerian and Lagrangian data into traffic models, which led me look specifically at the drifters and think critically about the types of statistics we were looking at.”

Her Work

6480c
Jenna conducts an experiment investigating pressure heads and their hydrostatic relation for the Summer@Brown course “Studying the Ocean from Blackboards to Drones.” (Photo by Abigail Bodner)

When examining fluid motion, researchers use a Lagrangian approach (such as drifters) to trace how ocean surface waters flow through an area over time and a Eulerian approach (such as a fixed buoy or weather station) to observe fluid dynamics at a specific location. Jenna initially studied drifters similar to those deployed during CARTHE’s Grand Lagrangian Deployment (GLAD) experiment and Lagrangian Submesoscale Experiment (LASER). She assessed the drifters’ behavior using velocity structure functions to better understand turbulence in a study area. She and her colleagues compared their statistics to those from a Eulerian model and noticed that the drifter-derived Lagrangian functions represented unrealistic conditions compared with other CARTHE research.

Jenna used an algorithm to determine that this disagreement occurred because surface drifters are “biased” at smaller scales when compared to Eulerian calculations, meaning that they don’t sample the velocity field equally at all times. She observed that the convergence of drifters into special flow structures, such as fronts, skews the Lagrangian statistics away from the Eulerian ones. “Previous studies show that drifters tend to cluster in regions of strong frontogenesis or can remain trapped in persistent eddies, leading them to only sample certain portions of the velocity field at a given time,” she explained. “We have found that velocity structure functions are biased below 10 km, but agree at scales above that mark. This means good things for people who would like to know mesoscale statistics, but also means that statistics below 10 km need to be cautiously interpreted.”

Jenna’s team is currently working on an observational study that pairs data from LASER drifters and X-band radar to validate these findings and determine the extent that clustering impacts results. Their preliminary results are consistent with their previous observations. They plan to incorporate more descriptive statistics and probability density functions to determine why bias occurs at smaller scales and how much of the Eulerian-Lagrangian difference can be contributed to this sampling bias. Jenna hopes that her research will help researchers collect and interpret drifter data more accurately, particularly for use in tracking spilled oil and algal blooms.

“A suite of biogeochemical floats is currently being released in various parts of the global ocean. There is then a question as to whether or not we can trust that these drifters represent the entire velocity field or if the statistics we wish to calculate from them may be biased because of their sampling behavior,” said Jenna. “Alongside my assessment of the Eulerian-Lagrangian differences, I am also developing a new theory related to structure functions and spectra that allows us to use biogeochemical data in a similar fashion to conservative tracers like temperature. This will hopefully give a better picture of what is happening in the upper ocean.”

Her Learning

Jenna’s time at the Fox-Kemper lab was a positive experience that helped her grow academically and as an individual. Conducting field work and attending conferences with her colleagues highlighted the deep connection between her interests in public health and ocean health and sparked her desire for future coastal dynamics and ocean biogeochemistry projects. Teaching opportunities during her doctoral research helped her develop a strategic and tested teaching method while learning more about her own field. “I also fine-tuned my music skills by singing and playing guitar in our Fox-Kemper Lab-wide band!” she said.

Her Future

Jenna is applying for post-doc positions and hopes to continue teaching and conducting research as a professor. Before she graduates, she will return to the Summer@Brown Program and teach the course “Studying the Ocean from Blackboard to Drones” to college-bound high school students. She encourages high school students to take diverse science courses and speak with researchers in different fields to get a good sense of what a scientific career path may entail. “We are always learning and questioning our environment, and it can take some time for you to find what makes you get up in the morning,” she said. “Remember: it is your path, and you should define it.”

Praise for Jenna

Dr. Fox-Kemper described Jenna as an incredibly hard-working and determined student and researcher whose work addresses a fundamental paradox of the CARTHE research: that Lagrangian statistics (from drifters) and Eulerian statistics (from gridded models) seemed to disagree at the submesoscale range. He explained that her research was initially difficult to publish, and she received skeptical feedback from reviewers because her results had substantial implications for drifter-based science. Jenna pushed through the obstacles, resulting in a stronger paper and important realizations about removing model uncertainties.

Dr. Fox-Kemper also reflected on her creative and fun-loving nature around the lab, “She’s famous for making science-themed cakes to celebrate defenses and prelims! A recent one involved green-colored goldfish crackers to indicate the effects of hypoxia. She’s a great presence in our lab.”

The GoMRI community embraces bright and dedicated students like Jenna Pearson and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals. Visit the CARTHE website to learn more about their work.

By Stephanie Ellis and Nilde Maggie Dannreuther. Contact sellis@ngi.msstate.edu for questions or comments.

************

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit https://gulfresearchinitiative.org/.

© Copyright 2010-2019 Gulf of Mexico Research Initiative (GoMRI) – All Rights Reserved. Redistribution is encouraged with acknowledgement to the Gulf of Mexico Research Initiative (GoMRI). Please credit images and/or videos as done in each article. Questions? Contact web-content editor Nilde “Maggie” Dannreuther, Northern Gulf Institute, Mississippi State University (maggied@ngi.msstate.edu).

Grad Student Hiron Investigates Loop Current Flows to Improve Oil Transport Models

6460a
Luna Hiron holds an Autonomous Profiling Explorer (APEX) float aboard the R/V Walton Smith for deployment in the Gulf of Mexico. (Provided by Luna Hiron)

During the Deepwater Horizon incident, some models predicted that oil would reach the Florida coastline. However, much of the oil became trapped in cyclonic-like currents, which are eddy flows associated with the Loop Current, and exited the Gulf of Mexico without reaching the Florida coast. To improve model representations of the Loop Current, Luna Hiron utilizes in situ and satellite data to investigate interactions between the Loop Current and its associated eddies and how they affect the Loop Current’s variability, which can improve predictions for where floating material such as oil may travel.

Luna is a Ph.D. student with the University of Miami’s Rosenstiel School of Marine and Atmospheric Science (RSMAS) and a GoMRI Scholar working on the project Three-Dimensional Gulf Circulation and Biogeochemical Processes Unveiled by State-of-the-Art Profiling Float Technology and Data Assimilative Ocean Models.

Her Path

From a young age, Luna often questioned the “why” of things. This natural curiosity and a passion for the ocean, like her father had, inspired her to become an oceanographer when she was an elementary school student. Her inspiration continued, and she completed a bachelor’s degree in oceanography at the Federal University of Santa Catarina in Brazil and became a research technician collecting and analyzing data for the Bermuda Institute of Ocean Sciences’ Bermuda Atlantic Time-Series Study (BATS). “My experience with BATS gave me new insights about the career of an oceanographer,” said Luna. “I developed a good understanding of large scale oceanography and wanted to broaden my horizons [through further education].”

6460b
Luna Hiron and her research colleagues aboard the R/V Walton Smith during a Gulf of Mexico research cruise. (Provided by Luna Hiron)

Luna searched for a Ph.D. program where she could learn more about mesoscale ocean processes, which are complex and crucial to understanding ocean dynamics. She was drawn to Dr. Nick Shay’s research about the Gulf of Mexico Loop Current and accepted a Ph.D. position in his lab at the University of Miami. “It is exciting to explore new problems that have not have been solved yet,” she said. “The Loop Current system is complex and involves both large and mesoscale features. My goal is to bring some insight into these dynamics and help better understand the Loop Current system.”

Her Work

6460c
Luna Hiron sampled the Gulf of Mexico water-column using a CTD (conductivity, temperature, depth) rosette on the R/V Walton Smith. (Provided by Luna Hiron)

The Loop Current has several life cycle stages, which can be tracked by satellite, that include retracting (the Loop Current goes directly from the Yucatan Channel to the Florida Strait), bulging (the Loop Current grows and enters the Gulf of Mexico and forms a “loop” before exiting through the Florida Strait), and shedding (the Loop Current becomes unstable and sheds an eddy. Luna combines satellite data from 2009 – 2011 that documented the Loop Current’s evolving stages and its associated eddies with water column data on temperature, salinity, and velocity (surface to 2900 m depth). Her analyses show that cyclone eddies often become stronger near the Loop Current, attracting the surrounding flow to the eddy’s center and strengthening the Loop Current as they interface. She also observed that cyclone eddies appear to interact with the Loop Current during all of the Current’s life stages and not just the shedding stages, an important insight into Loop Current dynamics.

6460d
(L-R) Luna Hiron with Dr. Johna Rudzin and Dr. Benjamin Jaimes of the Rosenstiel School of Marine and Atmospheric Science on NOAA’s WP-3D Orion aircraft. Dr. Jaimes is holding probes for deployment during a post-Hurricane Nate ocean survey. (Provided by Luna Hiron)

Luna’s observations about how eddies intensify or dissipate are crucial to forecasting oil transport and demonstrate the importance of sampling the ocean during all Loop Current life stages. “If an eddy is in a stage of intensification near an oil patch, it will attract the oil to the cyclone’s center and push it downwards, capturing the oil within the eddy and preventing it from reaching the coast, which is what happened during the Deepwater Horizon spill,” she said. “However, if the eddy is starting to break up, it will spread the oil at the surface and increase the area contaminated.”

Her Learning

Luna’s work in Dr. Shay’s lab exposed her to a wide range of research topics, such as air-sea interactions and ocean dynamics, which enriched her learning and provided her with multidisciplinary knowledge. She learned new approaches to the scientific process, especially the importance of identifying knowledge gaps and generating a hypothesis before attempting to answer questions. She explained that the lab’s collaborative nature taught her about teamwork, communicating science to the public, and conducting science with integrity and honesty.

Luna shared her most unforgettable experiences working with Dr. Shay. “A memorable moment was when I flew in the WP-3D aircraft from NOAA during the post-Hurricane Nate survey. It was incredible to be in a plane that flew through so many strong hurricanes,” she said. “Another great memory was when we were on a cruise deploying floats in the Gulf of Mexico and about seven dolphins were swimming in front of the ship for at least 30 minutes – it was amazing!”

Her Future

6460e
Luna Hiron and Josh Wadler of the Rosenstiel School of Marine and Atmospheric Science stand in front of the WP-3D Orion “Hurricane Hunters” aircraft at the NOAA Aircraft Operations Center facility in Lakeland, Florida. (Provided by Luna Hiron)

Luna hopes to pursue advanced studies or a position in a research institute after graduation. For students considering a science career, she suggests that they stay motivated, find what they love to do, and believe in themselves. “It is important to not be intimidated by other students or professors – ask questions and make contact! All of this is part of the learning process, and we always have more to learn and exchange with each other.”

Praise for Luna

Dr. Shay described Luna as a talented and energetic student and praised her collaboration with students and researchers across various disciplines and institutions. He explained that she is a productive team member working with Bureau of Ocean Energy Management (BOEM) mooring data, generating model simulations that investigate Loop Current-associated eddies, and helping collect shipboard measurements using EM-APEX (Electromagnetic-Autonomous Profiling Explorers) floats.

“Luna is preparing a manuscript for submission to a top tier journal and has submitted an abstract for presentation to the 2019 Gulf of Mexico Oil Spill and Ecosystem Science,” said Shay. “Her work is central to understanding the dispersion of hydrocarbons from a subsurface oil spill in the vicinity of strong subsurface currents.”

The GoMRI community embraces bright and dedicated students like Luna Hiron and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals.

By Stephanie Ellis and Nilde Maggie Dannreuther. Contact sellis@ngi.msstate.edu for questions or comments.

************

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit https://gulfresearchinitiative.org/.

© Copyright 2010-2018 Gulf of Mexico Research Initiative (GoMRI) – All Rights Reserved. Redistribution is encouraged with acknowledgement to the Gulf of Mexico Research Initiative (GoMRI). Please credit images and/or videos as done in each article. Questions? Contact web-content editor Nilde “Maggie” Dannreuther, Northern Gulf Institute, Mississippi State University (maggied@ngi.msstate.edu).

Video: “Motion of the Ocean” Shows Technology Used to Study Currents

5081Scientists completed four field experiments in the Gulf of Mexico, linking the dynamics of deep ocean, shelf, and coastal surface currents (where materials such as oil or debris naturally accumulate) in a way that has never been done before. So how did they do that?

The team representing 30 universities used 2,000 custom-made, biodegradable, GPS-equipped drifters; 15,000 biodegradable drift cards; hundreds of thousands of infrared images and high-resolution photos; 5 drones; 6 small boats; 2 planes; 2 research vessels; and a suite of instruments that measured physical properties and conditions of water and the atmosphere. Whew!

Take a look at the technology that researchers with the CARTHE consortium used to answer the question: Where is water going to go in the ocean? The data they collected will help develop the next generation of ocean circulation models.

Motion of the Ocean from CARTHE on Vimeo. Video credit: Waterlust

The CARTHE experiments have far-reaching applications with new scientific insights that can inform navigation, energy production, climate science, hurricane predictions, search and rescue, beach safety, and tracking floating non-biodegradable plastics pollution, which is a rapidly growing ocean problem.

Read more about the Gulf of Mexico field experiments that these scientists conducted:

************

This research was made possible in part by a grant from the Gulf of Mexico Research Initiative (GoMRI) to the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment II (CARTHE II) and CARTHE I. Other funding sources included the Office of Naval Research (Grant #N000141110087).

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

© Copyright 2010- 2017 Gulf of Mexico Research Initiative (GoMRI) – All Rights Reserved. Redistribution is encouraged with acknowledgement to the Gulf of Mexico Research Initiative (GoMRI). Please credit images and/or videos as done in each article. Questions? Contact web-content editor Nilde “Maggie” Dannreuther, Northern Gulf Institute, Mississippi State University (maggied@ngi.msstate.edu).

Grad Student Dykstra Sees Global Applications for Local Ocean Circulation Maps

4031a

Steve releases a drifter at Main Pass (Mobile Bay), Alabama, to study the surface tidal plume. (Provided by Steve Dykstra)

When Deepwater Horizon oil approached coastal environments, it was unclear how river water entering the Gulf of Mexico would affect the oil’s transport and fate. Steve Dykstra uses drifters and ship-deployed sensors to study how freshwater plumes disperse in the coastal environment over different seafloor topography. He plans to someday use his findings and experience to help inform coastal resource management in developing countries.

Steve Dykstra is a Ph.D. student at the University of South Alabama’s marine science program and a GoMRI Scholar with the Consortium for Oil Spill Exposure Pathways in Coastal River-Dominated Ecosystems (CONCORDE).

His Path

4031b

Steve explores the Mobile-Tensaw Delta to better understand how the area’s fluvial-tidal flow affects coastal circulation. (Provided by Steve Dykstra)

Steve became interested in science while exploring the forests, lakes, and wetlands around his childhood home near Lake Michigan. He was fascinated by nature’s complexity and developed a particular interest in river and stream morphology, which studies the form, function, and interactions of these waters with the surrounding landscape. As he grew up, Steve became more knowledgeable about morphology by frequenting sand dunes and learning how to redirect or “pirate” streams. He completed a bachelor’s degree in science at Calvin College in 2008 and decided his next steps would be less conventional.

Steve worked as a naturalist in Alaska’s Kenai Fjords National Park and Chugach National Forest, where he led tourist excursions and taught visitors about the area’s geology, ecology, and wildlife. Next, he volunteered for the NGO Help for the Massai, distributing food and helping run immunization clinics in Tanzania near Serengeti National Park in the Ngorongoro Conservation Area. “Working with the indigenous Massai people, I got a first-hand look at the developing world,” he said. “It taught me how to work cross-culturally.”

4031c

Steve prepares the microprocessors he constructed to go inside his drifters. (Provided by Steve Dykstra)

Steve completed an environmental science master’s degree at Taylor University and interned with Dynamic Solutions International’s watershed management program in Vietnam. He worked in watershed management in Tajikistan through the Global Partners organization. Security issues sent him back to the United States, and he decided to pursue a long-time desire – obtaining his Ph.D. Steve found an opportunity to research freshwater discharge’s influence on the coastal environment with Dr. Brian Dzwonkowski and joined his team at the Dauphin Island Sea Lab (DISL).

A personal motivator for Steve is a calling to Biblical stewardship. “As a Christian, I believe I’m called to care for and try to reconcile the world around me,” he said. “I think it’s something that a lot of Christians overlook, but stewardship includes the natural environment that we have.”

 

His Work

Steve works in the Mobile Bay delta, where tides influence river flow and level as it moves into the coastal area. As freshwater enters saltier waters, it remains on the surface and forms a plume that spreads over a wide area. However, changes in the coastal geomorphology can alter flow dynamics, salinity, and the freshwater’s movement into the Gulf. “Narrow or wide or deep inlets change the way water flows,” explained Steve. “As the geomorphology changes – either naturally or anthropogenically –it changes the flow dynamics, which inadvertently change how much salinity goes into the Bay and how the freshwater moves out into the Gulf.”

4031d

Steve prepares a drifter for release. (Provided by Steve Dykstra)

Steve’s component of the research focuses on Main Pass, Mobile Bay, where he helps build and release GPS-equipped drifters fitted with temperature and salinity sensors to study how fast they move, where they move, and how they spread out and disperse. He takes simultaneous measurements aboard a research vessel using conductivity, temperature, and depth (CTD) sensors and a Laser In-Situ Scattering and Transmissometry (LISST) instrument, which measures sediment grain sizes and concentrations in the water. He compares these measurements with the drifter readings to determine the plume’s movement relative to the surrounding environment, what it transports, and how it mixes with Gulf waters.

Steve’s observations will help validate a CONCORDE-developed circulation model reflecting the exposure pathways and mechanisms of Deepwater Horizon oil. His work will inform the land-to-sea portion of the model and compliment other researchers’ work in offshore regions. “It’s easier to predict how oil will function when it’s moving around in the Gulf of Mexico, but it’s more difficult to figure out how it will interact with the complex shoreline,” he said. “I’m taking observations to help inform and change the model to better reflect the system that we’re actually working with.”

4031e

Steve and his advisor, Dr. Brian Dzwonkowski, release small drifters in the Grand Bay National Estuary Research Reserve. (Provided by Steve Dykstra)

His Learning

One of the greatest benefits from Steve’s GoMRI research has been the opportunity to take the time to delve into the materials and research. His past travels left him little opportunity to get to know a single system. “I often had to skip over some good insights and get more of the theory behind something instead of really learning one particular local environment. I think it’s been helpful to finally do and understand that,” he said. Steve’s GoMRI work also introduced him to marine science. Prior to beginning his Ph.D., Steve had never taken a marine science class and had little experience working in coastal or marine environments. He credits his research as the source of everything he currently knows about marine environments.

Steve also frequently works with his secondary advisor Kelly Dorgan, a sediment ecologist with the ACER consortium. Interacting with researchers from different projects helps him see differences in how consortia operate and coordinate when conducting research in same region. Steve meets and interacts with scientists in many disciplines and observes how they conduct their research and interact with other investigators. Steve reflected, “I’ve been able to learn quite a bit about discerning who to learn from and what questions to ask which researchers.”

His Future

4031f

Steve and Dr. Dzwonkowski (white boat) follow drifters to compare their tracks with a dye release in Grand Bay National Estuary Research Reserve. (Photo by Robert Moorhead)

Steve is considering a post-doctoral position after graduation and becoming further established in his field. However, his long-term goal is to go back overseas and conduct research in resources management for developing countries, where he believes his education and experience in streams and coastal environments could help. “I’d like to help countries that are trying to manage their resources, particularly in deciding how to balance development and conservation. Whether I’m doing consulting work or conducting research with a local university, I’d like to continue to do some of the relief work I was doing previously but with further expertise.”

Steve advises that students considering a science career should start broad, learning a wide range of foundational material, and then specialize through research and internship opportunities. “Don’t do an internship because it looks good on your resume but chase your dreams and allow yourself to fail in that process,” he said. He hints that those opportunities might even offer a way to avoid debt after graduating, “Be willing to take things slower and work jobs that you may not have initially considered or move to places with better financial opportunities. I’ve been able to go through debt-free, not because I had parents assisting me, but because I worked hard and moved to places that I’d never been before.”

Praise for Steve

Dzwonkowski said that Steve has shown impressive ambition and an industrious nature throughout his graduate career. He said that Steve seeks ways to improve his grant-writing skills, hunting down external research funds to support his graduate career through student travel opportunities and prestigious fellowship opportunities. “Given his early and immediate interest in proposal writing, I am positive that Steve will be successful obtaining future research funds,” he said.

Dzwonkowski also highlighted Steve’s contributions to education and outreach efforts. DISL adapted Arduino computing components for their summer research, and Steve helped train students to wire and program the components and discussed how they could use the low-cost technology in their own research. He is preparing to help build Arduino-based technical skills into K-12 lesson plans. “He has a very positive influence on the people around him,” said Dzwonkowski. “He has been a great addition to DISL, and I look forward to seeing him develop along what I know will be a highly impactful career path. I believe he will make a difference in many peoples’ lives over the course of his career.”

The GoMRI community embraces bright and dedicated students like Steve Dykstra and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals. Visit the CONCORDE website to learn more about their work.

************

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

© Copyright 2010- 2017 Gulf of Mexico Research Initiative (GoMRI) – All Rights Reserved. Redistribution is encouraged with acknowledgement to the Gulf of Mexico Research Initiative (GoMRI). Please credit images and/or videos as done in each article. Questions? Contact web-content editor Nilde “Maggie” Dannreuther, Northern Gulf Institute, Mississippi State University (maggied@ngi.msstate.edu).

Lesson Plan: “Taking Science Deeper” Deep-Sea Activities (K-6)

deepend_wide_logo_squirt

Images and content credit: DEEPEND Consortium

The Deep-Pelagic Nekton Dynamics (DEEPEND) Consortium has created lesson plans for “Taking Science Deeper” Activities.

Book 1: Introduction to the Deep Sea
Book 2: Deep-Sea Animals
Book 3: Hagfish Day!
Book 4: Ocean Currents and Pollution Awareness

For additional educational materials from DEEPEND, click here.

Young Scientist Visualizes Risk to Whales in an Oil Spill Scenario

Alek with map of his research area

Alek stands next to a map of his research area, holding the drift cards he used in his oil spill study in front of a nautical chart of the Salish Sea. (Provided by Alek)

Fueled by a passion for science and endangered species, Alek designed and executed a research project that involved scientists from eight institutions, four-hundred drift cards, and over a year’s work. A substantial undertaking for any scientist, this is even more impressive because Alek is seven years old.

Alek Finds a Calling

Alek lives in Washington near the coast where he has spent much time watching and learning about orca whales, specifically the Southern Resident Killer Whale of which there are about eighty known remaining.

“I really like the white eye patches they have,” he said. Scientists at the Center for Whale Research near Alek’s home are working hard to track and protect these orcas. “Dr. Ken Balcomb is the main whale researcher there,” said Alek. “He inspires me because he stands up for these whales’ freedom and protection.”

Alek’s hand-written letters asking for donations

A copy of the first two pages of Alek’s hand-written letters asking for donations to fund his research in the form of an “Adopt a Drift Card” campaign. (Provided by Alek)

When Alek was five, he read a book that discussed the environmental impacts of the Deepwater Horizon and Exxon Valdez oil spills, which drove his desire to help protect the ocean ecosystem near his home. “My heart broke because it was so sad,” he recalled. “The whole ocean ecosystem was contaminated for hundreds of miles, and lots of ocean animals died.” Every year, thousands of oil tankers cross the Salish Sea, an intricate network of coastal waterways near the United States-Canadian border where many of these whales live. Alek became concerned that the Southern Resident Killer Whales could encounter and be affected by large amounts of oil if a spill occurred.

A Little Help From His Friends

Alek began gathering books on oil spills and visiting university research websites when he was six, focusing on oceanography departments that study spills.

A hand-drawn map that Alek included in his fundraising letter

A hand-drawn map that Alek included in his fundraising letter shows oil tanker routes in the Salish Sea. (Provided by Alek)

He emailed scientists around the country, including Piers Chapman and Tamay Özgökmen – the directors of the GISR and CARTHE consortia, respectively – for input on how to proceed. More than ten prominent researchers agreed to sit on Alek’s science committee and advise his research.

Alek chose to conduct a drift card study after finding out it would take more than a year to obtain a permit to deploy GPS-enabled drifters, an ocean current tracking method that he wanted to pursue like Özgökmen has done. Drift cards, made of wood or other lightweight materials that float on the water’s surface, are another tool that can show how currents move through an area. Chapman has used drift cards, deploying them at a fixed location and plotting times and points on a map where people report cards they discover (the cards have printed explanations about their purpose and reporting instructions). As Alek’s project developed, Chapman and Özgökmen answered his questions and reviewed his reports.

“Alek is an incredibly motivated young man,” said Chapman. “I was very happy to suggest possible ways that he could analyze his data while putting his report together and make suggestions to help give the video he made about his research more impact. He’s a great kid and deserves every encouragement.”

Alek paints his drift cards

Alek paints his drift cards bright yellow using a non-toxic, biodegradable paint mixture. (Provided by Alek)

Alek’s family was supportive and helped him with the things he couldn’t do himself, such as traveling to various sites and using an electric saw to cut wood into drift cards. However, they encouraged Alek to raise the money needed for the project himself so that he would get a broader experience of being a scientist.

Alek sent letters asking people to sponsor a drift card for one dollar per card. He collected $460 from donors across the country, including many scientists, and even received a letter from President Obama thanking him for his work. He used this money to purchase biodegradable and nontoxic materials to build the cards.

If You Build Them, They Will Drift

Alek releases his finished cards in Rosario Strait

Alek releases his finished cards in Rosario Strait between Peapod Rocks and Buckeye Shoals—one of the busiest oil tanker routes in the Salish Sea. (Provided by Alek)

Alek made two batches of 200 cards, each batch labeled either “A” or “B.” He deployed the cards at Rosario Strait, a dangerous channel that many ships pass through on their way south. He released the first set on September 6, 2014, as the tide was going out and the second set as the tide was coming in on September 21. Days and weeks went by, and one-by-one people in the area returned 181 drift cards. He even received information about one that had floated all the way to Alaska! He calculated the GPS coordinates where each card was found, logged them into a spreadsheet, and used this information to populate maps on Google Earth.

Some people who found drift cards sent Alek a photo

Some people who found drift cards sent Alek a photo of the card they found. Within four months, 45% of Alek’s drift cards had been found and reported. (Provided by Alek)

Alek then mapped the probable path oil would take through the Salish Sea should a spill occur in the Rosario Strait. He compared these paths to reports of orca migrations to show where their paths might encounter oil. “The orcas don’t know how to avoid oil in water, so they would swim right through it,” said Alek. “It is sad to find out that, if my oil spill simulations were real, every single one of the endangered orcas here would be at risk of oil contamination.”

When he completed his study, Alek created a website about the project. The site contains an overview of his work with maps, charts, and graphs showing his findings and suggestions for what the public and lawmakers can do to reduce our dependence on oil and protect endangered species. No one from congress has responded yet, but many others have, including Jane Goodall who sent an email praising his efforts to call attention to these whales’ potential risk. Alek also created a short video summarizing his study, a one hour video detailing his project, and a 154-page scientific report.

This person sent Alek a picture of himself and the drift card he found.

This person sent Alek a picture of himself and the drift card he found. (Provided by Alek)

“I was so impressed by Alek’s one-hour movie of his year-long study—the level of detail was amazing,” reflected Özgökmen. “We are looking at a hardworking, brilliant young mind here. I can only hope that he gets the best education this country can offer, as he will have much to contribute to our society in the future.”

Alek’s Perseverance

Alek admitted that creating the spreadsheets and maps was more work than he expected. After several months of data entry and analysis, there were times when he felt like giving up because of the work volume.

Alek proudly shows off his data spreadsheets.

Alek proudly shows off his data spreadsheets. He has promised to share his data, analysis, and maps with other scientists and research groups to help support their environmental studies. (Provided by Alek)

However, he said that instead of quitting, he looked to the great scientists of history to remind himself to keep going, “I thought: What if they gave up? If Copernicus gave up, we might never know the sun was the center of the solar system. If Charles Darwin gave up, we might not know about evolution. If Crick and Watson gave up, we might not know how genetics and DNA work. I learned I couldn’t give up, because everything that is important in life takes hard work!”

Map showing the estimated contamination areas

This Google Earth map shows the differences in estimated contamination areas one week after oil is released under an outgoing tide (red) and an incoming tide (yellow). (Provided by Alek)

What’s next on Alek’s radar? He sees “endless possibilities” for more science in his future. “Some of the things I am thinking about are chemistry, building an underwater ROV, and 3D printing,” he said. He also stated that, although still many years in the future, he hopes to study marine science in college. One thing is certain: whatever direction he eventually pursues, Alek has already proved himself a precocious scientific thinker in the world of oil spill research.

Map showing the estimated area at risk of oil contamination four months after the simulated spill

This Google Earth map shows the estimated area at risk of oil contamination four months after the simulated spill. (Provided by Alek)

************

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

How Grad Student Chen Navigates the Whirlpool of Oil Transport

Bicheng at Pennsylvania State University works on the coding for simulations involving oil plumes. (Provided by Bicheng Chen)

Bicheng at Pennsylvania State University works on the coding for simulations involving oil plumes. (Provided by Bicheng Chen)

Bicheng Chen is dedicated to seeking the physical explanations behind everyday phenomena. His research on ocean turbulence and numerical modeling led him to investigate the interactions among wind, waves, and turbulence and their effect on oil transport and dispersion.

Bicheng is a meteorology Ph.D. student at Pennsylvania State University and a GoMRI Scholar with the project Large Eddy Simulation of Turbulent Dispersion of Oil in the Ocean Surface Layers: Development, Testing and Applications of Subgrid-Scale Parameterizations. He discussed his research and reflected on his academic journey.

His Path

Bicheng’s childhood dream of becoming a scientist began by watching spacecraft on television and grew after his first middle school physics class. He explained his fascination, “Physics is one of the only ways we can describe the phenomena we observe in our world.” Bicheng completed a physics undergraduate degree at Peking University and joined their atmospheric physics masters’ program, where he developed an interest in fluid mechanics and numerical modeling.

After completing his master’s degree, Bicheng contacted Dr. Marcelo Chamecki, a Penn State University meteorology professor, hoping to join his team researching turbulence – the continuous change in magnitude and direction of a fluid’s flow. Chamecki, working with Johns Hopkins University’s Charles Meneveau, had a research position available to track and predict oil dispersion in the ocean mixed layer. Bicheng happily joined Chamecki’s lab as a Ph.D. student, “Life in academia is very exciting,” he said. “My understanding of fluid dynamics and numerical modeling has been growing rapidly.”

His Work

 Bicheng (right) discusses his research with a colleague. A new technique that he is using to track oil plumes is visible on the monitor behind them. (Provided by Bicheng Chen)

Bicheng (right) discusses his research with a colleague. A new technique that he is using to track oil plumes is visible on the monitor behind them. (Provided by Bicheng Chen)

Turbulence can cause vertical mixing of oil that forms a continuous plume, which helps disperse oil into the water column for microbial consumption. However, wind-wave interactions can also create Langmuir circulations, which are counter-rotating vortexes near the ocean surface that can affect the vertical mixing of oil. Langmuir circulations converge strong forces on the water’s surface and below that push small oil droplets into deeper waters and constrain large droplets at the surface.

Bicheng uses large-eddy simulations to examine oil plume evolution and the flow of the mixed ocean layer under varying wind speeds, wave characteristics, and oil droplet sizes. These simulations help him to visualize swell waves and see their effect on oil dispersion. “As this project evolves, I feel we are able to better understand the physical processes governing oil slick transportation and dilution in the ocean mixed layer,” he said. He hopes that his findings can help improve large-scale models used to predict oil transport and develop contingency plans.

His Learning

 

Bicheng displays a poster detailing his research at Pennsylvania State University. Bicheng and his advisor Dr. Marcelo Chamecki created this poster, which was presented at the 2015 Gulf of Mexico Oil Spill and Ecosystem Science Conference. (Provided by Bicheng Chen)

Bicheng displays a poster detailing his research at Pennsylvania State University. Bicheng and his advisor Dr. Marcelo Chamecki created this poster, which was presented at the 2015 Gulf of Mexico Oil Spill and Ecosystem Science Conference. (Provided by Bicheng Chen)

Bicheng is honored to conduct research alongside experts in his field. In addition to working with his advisor, Bicheng communicates frequently with Meneveau and Di Yang (University of Houston), “Our team members have a profound understanding of fluid mechanics, and our weekly teleconferences have contributed immensely to my learning experience.” He has enjoyed meeting with scientists in other disciplines at the annual Gulf of Mexico Oil Spill and Ecosystem Science Conference. He said it was exciting to see many different research fields brought together by the Deepwater Horizon oil spill. He added, “I especially enjoyed explaining my work to other scientists who are interested in addressing the same problem from a different perspective.”

Bicheng is thankful that his parents have always encouraged him to pursue his dream and supported his decisions, even when those took him far from his home in China. He explained that when his father was a young man, he had an opportunity to further his academic career but could not pursue it because his parents wanted him close to home. “When my time came, my father did not hold me back. Instead, he wanted me to go as far as I could,” says Bicheng.

His Future

Bicheng plans to pursue a post-doc position after he completes his Ph.D. and hopes to teach. He remarked that wherever his future takes him, he wants to continue learning new things and expand his knowledge of his field.

Praise for Bicheng

 

 A figure from Bicheng’s poster. The figure depicts vertical velocity near the ocean surface (left column), instantaneous oil surface concentration (middle column), time-averaged oil surface concentration (right column), and the direction of wind stress and swell (arrows). It suggests that the angle between wind and swell has profound effects on the orientation and strength of Langmuir circulations (red/blue bands in left column), which causes different patterns in instantaneous surface plumes. (Provided by Bicheng Chen)

A figure from Bicheng’s poster. The figure depicts vertical velocity near the ocean surface (left column), instantaneous oil surface concentration (middle column), time-averaged oil surface concentration (right column), and the direction of wind stress and swell (arrows). It suggests that the angle between wind and swell has profound effects on the orientation and strength of Langmuir circulations (red/blue bands in left column), which causes different patterns in instantaneous surface plumes. (Provided by Bicheng Chen)

Meneveau, the project’s principle investigator, described Bicheng as a great asset. He praised his “can do” attitude and explained that his most impressive quality is his ability not only to conduct large simulations but also to extract insights and meaningful knowledge from them. “He showed results and then told us what they meant,” said Meneveau. “We were always able to have our discussions at a deep, conceptual level and concentrate on the physics rather than getting hung up on the technical details.”Chamecki said that Bicheng’s great personality and creative work have surpassed expectations, explaining that few graduate students can contribute to their project like he has. Chamecki recalled lamenting to Bicheng about the limitations of their numerical algorithm. “Bicheng had an idea to make the code run more quickly and it developed into an entirely new line of investigation that became an integral part of our project,” Chamecki explained. Looking back at Bicheng’s contributions, Chamecki believes that he has a successful science career ahead of him.

The GoMRI community embraces bright and dedicated students like Bicheng Chen and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals.

Learn more about this research on the Atmospheric Boundary Layer and Turbulence Research Group (Penn State) and Turbulence Research Group(Johns Hopkins) websites.

This research was made possible in part by a grant from BP/The Gulf of Mexico Research Initiative (GoMRI) to the Large Eddy Simulation of Turbulent Dispersion of Oil in the Ocean Surface Layers: Development, Testing and Applications of Subgrid-Scale Parameterizations. The GoMRI is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

Bob The Drifter Inspires Singapore Classroom to Conduct Oil Spill Research Experiment

Students first created their drifter design on an iPad before constructing it in real life. (Provided by: Jenny Harter)A fourth grade class at Singapore American School found Bob the Drifter and the CARTHE science group while researching ocean science and pollution online.

CARTHE’s drifter experiments, GLAD and SCOPE, are helping scientists understand how ocean surface currents move pollutants such as oil. CARTHE’s visually-engaging experiments and their animated, data-gathering mascot “Bob” motivated these young students to build and test their own ocean drifter!

Students assumed roles as researchers, engineers, communication managers, and outreach coordinators for their experiment and began working on a drifter prototype. They created videos, posters, comics, and even a Popplet mind-map describing what they had learned about drifters tracking oil spills. The class wanted input from CARTHE, so their teacher Jenny Harter emailed CARTHE Outreach Manager Laura Bracken and explained that they wanted to launch their own drifter in Singapore and share data. The CARTHE team was impressed with the students’ passion and professionalism and was eager to help.

The Singapore students, their teacher, and Bracken held a Skype session to discuss drifter design and answer questions about how CARTHE conducted their experiments. The students asked technical questions about how the drifters’ GPS units are powered and how often data is recorded. They used Bracken’s feedback to design and build their drifter prototype, which they tested in their school’s pool. They plan to replace the design’s cardboard components with wood ones to improve their drifter’s float time before the next test. See a video of one of their tests here.

A good scientist knows that communicating research and findings is as important as the experiments themselves, so the class outreach team created a presentation explaining drifters, CARTHE, and tracking oil spills. They shared their presentation with the students at their school to spread awareness about their project. Ultimately, they hope to make sturdier, better functioning drifters like “Bob” that can track oil spills and provide data to researchers in Singapore and in the Gulf of Mexico.

Learn more about the students’ project and keep up with its progress through their class blog!

Visit CARTHE’s outreach page for more information about Student Drifter Programs and other outreach projects.

Award-Winning Video Teaches Drone Technology for Oil Spill Research

Drones used in oil spill reseearchThe Gulf of Mexico Research Initiative congratulates the CARTHE research team for their first place award-winning video that teaches Drone Technology for Oil Spill Research.

Over 37,000 middle school students across twenty-one countries selected the winning ocean science research videos after a two-month evaluation of the top entries that best explained scientific results and significance.

The Florida Center for Ocean Science Education Excellence (sponsor) and the National Science Foundation (funder) established the Ocean 180 Video Challenge to provide scientists a platform and an opportunity to translate research importance and outcomes to non-experts.

CARTHE’s winning video demonstrates the use of drones during their SCOPE experiment to understand how nearshore currents move contaminants in the water. One of the contest requirements was to have an accompanying peer-reviewed journal article, which the CARTHE team published in the 2015 American Meteorological Society Surf zone monitoring using rotary wing Unmanned Aerial Vehicles.

Graduate student Patrick Rynne, a member of the CARTHE video creation team, explained that the ability to communicate scientific findings is an essential skill to develop. “Although it is critical that research goes through the peer-review process, we also have a responsibility to deliver our findings in a digestible way to the public.”

Teacher Kathryn Blysma, whose students at Dr. John Long Middle School in Wesley Chapel, FL participated as judges applauded this effort to connect classroom lessons and scientific discoveries. “Too often, students only see science in isolation with the benchmarks assigned to them, rather than the real-world application of that learning,” said Blysma. “Making connections between classroom learning and the real-world is critical to being good stewards of our planet.”

The winning video was a collaborative effort that included University of Miami RSMAS graduate students and creators of Waterlust, Patrick Rynne and Fiona Graham; scientists Ronald Brouwer, Ad Reniers, and Matthieu de Schipper with Delft University; Jamie MacMahan with the Naval Postgraduate School, and CARTHE Outreach Manager Laura Bracken.
Read more…

Credits: Patrick Rynne and Fiona Graham, Waterlust.  Music: The Submarines – 1940 (AmpLive Remix) Instrumental. Filmed with GoPro Hero 3+ cameras

Grad Student Smith Keeps Surface Currents and Disaster Response on His Radar

Conor (left) and University of Miami marine specialist Mark Graham (right) prepare to deploy a CTD to measure salinity and temperature profiles near the Deepwater Horizon site. Data from these measurements provide insight into the movement of the ocean surface. (Photo credit: Nathan Laxague)

Conor (left) and University of Miami marine specialist Mark Graham (right) prepare to deploy a CTD to measure salinity and temperature profiles near the Deepwater Horizon site. Data from these measurements provide insight into the movement of the ocean surface. (Photo credit: Nathan Laxague)

After the Deepwater Horizon oil spill, many Gulf residents wanted to know where the oil was going and how fast it would get there. Conor Smith is improving the accuracy and turn-around time of satellite-derived surface current velocity estimates for better ocean transport information.

Conor is working toward a method that accurately interprets these velocities using information contained solely within synthetic aperture radar (SAR) satellite imagery. Currently, he combines ocean drifter data and a numerical model to account for wave motion with SAR data to estimate current velocity. His goal is that SAR-based speed estimates will be accurate enough so that there is no need for labor-intensive drifter data and developing and validating a near-shore numerical model. Conor says that doing so “will be useful to oil spill mitigation, as it will provide a rapid assessment of the surface current movements that transport pollutants.”

Conor is an applied marine physics Ph.D. student at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science and a GoMRI Scholar with CARTHE. He shares the personal influences and intellectual experiences of a life lived on the water.

His Path

Conor (left) and University of Miami marine specialist Mark Graham (right) prepare to deploy a CTD to measure salinity and temperature profiles near the Deepwater Horizon site. Data from these measurements provide insight into the movement of the ocean surface. (Photo credit: Nathan Laxague)

Conor (left) and University of Miami marine specialist Mark Graham (right) prepare to deploy a CTD to measure salinity and temperature profiles near the Deepwater Horizon site. Data from these measurements provide insight into the movement of the ocean surface. (Photo credit: Nathan Laxague)

Conor grew up near Chicago, where sailing on Lake Michigan with his family kept him close to the water. Before entering high school, his world changed in a big way. Conor’s parents homeschooled him and his brother for a year while the family sailed the Great Lakes and waters in Canada, the east coast, and the Bahamas. On that trip, Conor experienced wind-sea interactions first-hand while transiting locks, lakes, rivers, bays, channels, and island passes. He says that those experiences made him “fall in love” with marine sciences.

While completing his undergraduate physics degree at the College of Charleston in South Carolina, Conor toured UM. There, he met one of his future advisors, Ad Reniers, an associate professor of applied marine physics and lead investigator ofCARTHE’s SCOPE expedition. Conor was accepted to the UM Rosenstiel School graduate program working under Reniers and SAR-specialist professor Roland Romeiser. Conor credits his family’s support, a childhood near the water, hard work, and good luck with fueling his journey into oil spill research.

His Work

Aboard the Ibis, Conor (center) and fellow students Nathan Laxague (left) and Matt Gough (right) prepare CODE-style drifters to be released at a specific location. (Photo credit: Bruce Lipphardt)

Aboard the Ibis, Conor (center) and fellow students Nathan Laxague (left) and Matt Gough (right) prepare CODE-style drifters to be released at a specific location. (Photo credit: Bruce Lipphardt)

Understanding how the ocean moves under an oil-covered surface is important to predicting where oil will travel. Conor tracks the speed of ocean surface currents using TerraSAR-X, an Earth observation satellite, which he says is similar to police radar guns. Police radar calculates car speed by emitting an electronic pulse that bounces off of the vehicle and returns to the instrument. “The satellite I work with uses the same principals to measure the line-of-sight speed of the ocean surface,” he explains. However, the circular motion of surface waves complicates current velocity calculations. To account for this motion, he checks the satellite’s speed estimates against drifter data paired with the Delft3D numerical model.

Conor conducts most of his research using conditions at the mouth of the Columbia River on the west coast. His calculations must be accurate and efficient under different circumstances, and this river inlet provides a dynamic range of ocean-surface water conditions that is perfect for comprehensive methods tests. Conor plans additional testing near Destin, Florida.

Conor has gained extensive experience with ocean surface drifters through his active involvement in two CARTHE experiments, the Grand Lagrangian Deployment (GLAD) and the Surfzone Coastal Oil Pathways Experiment (SCOPE). In these experiments, scientists released GPS-enabled drifters into the Gulf, collecting surface flow information that enhanced ocean current models and advanced our fundamental understanding of the ocean. Conor also applied his work to a real emergency response, the July 2013Hercules gas blowout. In three days, he and fellow CARTHE Ph.D. studentNathan Laxague formed an emergency drifter deployment plan, prepared the drifters, traveled from Miami to Louisiana, and launched drifters near the blowout site. “Had there been a contaminant of some sort released, our drifters would have provided one-of-a-kind data to predict the transport of it in the ocean,” said Conor. He talks more about this event in this video.

His Learning

 srcset=

Conor (right) and Ad Reniers (left) inspect and prepare a camera rig to capture unique views of the first drifter deployment as fellow student Matt Gough looks on. (Photo credit: David Nadeau)” width=”300″ height=”415″> >Conor (right) and Ad Reniers (left) inspect and prepare a camera rig to capture unique views of the first drifter deployment as fellow student Matt Gough looks on. (Photo credit: David Nadeau)

One of Conor’s most memorable experiences was witnessing the collaborative efforts of many scientists during the GLAD experiment. Though he was initially overwhelmed by the experiment’s extensive preparations, which included building drifters, developing deployment and weather plans, and coordinating the ship’s assets and crew, he and the team worked together and successfully completed the tasks. “Working towards a common goal with a tight-knit group of people who were passionate for their research was inspiring,” he reflects. “It was both fun and thrilling to be part of a diverse team that required the coordination of so many assets. I felt appreciated for my own contributions to the group, and I learned how to better work as a team.”

Conor’s experience during the Hercules blowout response helped him see his research in a different light: “As the crippled and damaged Hercules rig came into view, I truly realized the importance of our mission and the efforts felt worthwhile.”

His Future

After completing his Ph.D., Conor wants to work in the development and deployment of ecofriendly power sources. He is particularly interested in hydroelectric turbines to be deployed in ocean currents or tidal waters. “Growing up on a sailboat taught me a lot about sustainable living. We lived comfortably using electrical power produced by a wind turbine mounted to our boat,” he explains.

Praise for Conor

Conor (far right), Mark Graham (right), and Texas A&M – Corpus Christi environmental scientist Derek Bogucki (left) lower an optical turbulence sensor overboard to sample micro variations in temperature near the ocean surface. (Photo credit: David Nadeau)

Conor (far right), Mark Graham (right), and Texas A&M – Corpus Christi environmental scientist Derek Bogucki (left) lower an optical turbulence sensor overboard to sample micro variations in temperature near the ocean surface. (Photo credit: David Nadeau)

Dr. Reniers reflected on the unique skills and can-do attitude that have made Conor “a pleasure to work with and a real asset” to the team. “Conor is not your typical graduate student,” said Reniers. “He has exceptional field skills. You can tell him to take care of a drifter deployment somewhere in the Gulf of Mexico and he not only preps the instruments but also devises a plan for getting the vessel ready and conducting the deployment.” Reniers cited Conor’s quick and creative problem solving as one of his most important and distinctive traits, “Whenever some logistical obstacle prevents us from doing the experiment, he comes up with a quick and effective solution. He’s the MacGyver of the Seas.”

The GoMRI community embraces bright and dedicated students like Conor Smith and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals.

Visit the CARTHE website to learn more about their work.

************

This research was made possible in part by a grant from BP/The Gulf of Mexico Research Initiative (GoMRI) to the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). The GoMRI is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

A Match Made in Florida: Citizens and Scientists Team Up for Research and Education

2138a

Teens from StreetWaves deploying a variety of CARTHE drifters near Miami Beach. (Provided by: CARTHE)

What do the Consortium for Advanced Research on Marine Mammal Health Assessment (CARTHE), the International SeaKeepers Society, and Fleet Miami have in common? Ocean research!

Last September, CARTHE researchers from the University of Miami Rosenstiel School partnered with SeaKeepers and Fleet Miami to widen the reach of ocean and oil spill research in the local community. The alliance led a three-day expedition aboard a 54-foot East Bay yacht to test the accuracy of various GPS-enabled surface current drifter models and to introduce students to marine science.

Surface drifters track ocean currents and can help researchers and responders monitor oil’s movement through the ocean following a spill. CARTHE researchers aboard Fleet Miami yacht Shredder deployed and retrieved a variety of surface current drifters, including several biodegradable models.

2138b

The CARTHE, Seakeepers, Fleet Miami, and StreetWaves team celebrate a successful experiment. (Provided by: CARTHE)

During the expedition, researchers tested each drifter’s accuracy by monitoring wave height and frequency, water speed, wind speed, and ambient stratification. This data will expand existing ocean current models and help improve emergency response to oil spills, rescue missions, and other disasters.

The team dedicated the expedition’s final day to teaching teenagers about ocean research. The students are members of StreetWaves, a non-profit program in Miami Beach that introduces underprivileged youth to surfing, paddle boarding, and sailing. Aboard Shredder, CARTHE researchers showed the students how the drifters work and explained why data from ocean monitoring devices is so important to ocean health. The students then experienced ocean research first-hand by helping deploy the drifters.

2138c

A student watches CARTHE scientist Guillaume Novelli demonstrate how to measure wind with a handheld anemometer. (Provided by: CARTHE)

This exciting expedition was a warm up for CARTHE’s collaborations with SeaKeepers, which the consortia hopes to continue in future research.

Watch CARTHE Outreach Coordinator Laura Bracken describe the Drifter Design Expedition and Outreach.

CARTHE brings together over 50 of the nation’s top ocean experts to share knowledge and explore the fate of the hydrocarbons from the Deepwater Horizon oil spill.

2138d

CARTHE graduate student David Ortiz-Suslow deploying drifters just off the coast of Miami Beach. (Provided by: CARTHE)

The International SeaKeepers Society works directly with the yachting community and enables them to take full advantage of their unique potential to promote ocean research, conservation, and education efforts and to raise awareness about global ocean issues. Watch a video of SeaKeepers’ Highlights for 2014!

More information about these organizations is available on the CARTHE, SeaKeepers, and Fleet Miami Facebook pages!

************

The Gulf of Mexico Research Initiative (GoMRI) is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

Grad Student Laxague is Making Waves Using Sea-surface Ripples to Detect Oil

Nathan stands proudly in front of the data acquisitions system he set up inside the Surface Physics Experimental Catamaran (SPEC) during the 2013 Surfzone-Coastal Oil Pathways Experiment (SCOPE) in Destin, FL. (Photo credit: Tamay Özgökmen)

Nathan stands proudly in front of the data acquisitions system he set up inside the Surface Physics Experimental Catamaran (SPEC) during the 2013 Surfzone-Coastal Oil Pathways Experiment (SCOPE) in Destin, FL. (Photo credit: Tamay Özgökmen)

Nathan Laxague studies a small-scale subject matter that has potentially large-scale applications. Capillary waves – or ripples – on the ocean surface can indicate the presence of a film or oil slick on the water’s surface, making them “an important link in the chain of oil spill response.”

Nathan is a physics Ph.D. student at the University of Miami and a GoMRI Scholar with CARTHE. He describes how his involvement in collaborative interdisciplinary research has changed his perception of the scientific process and the way it is communicated.

His Path

Nathan has always loved both language and science, and his desire to “combine communication and science in a useful and empowering way” sparked his interest in research and teaching. His parents’ language arts backgrounds introduced him to eloquent communication, while his participation in Audubon camps near his seaside home of Scarborough, Maine, involved him in environmental sciences. When he entered college, Nathan chose a science major, feeling that would give him more professional fulfillment, and pursued language arts as a hobby. He completed a physics degree at the University of Miami and then set out to find his place in the scientific world.

Nathan reviews salt-water tank images as producer Ali Habashi films footage for a CARTHE video detailing how field data and interconnected modeling can come together to improve our understanding of the surface currents that influence the fate of Gulf pollutants. (Photo credit: Tamay Özgökmen)

Nathan reviews salt-water tank images as producer Ali Habashi films footage for a CARTHE video detailing how field data and interconnected modeling can come together to improve our understanding of the surface currents that influence the fate of Gulf pollutants. (Photo credit: Tamay Özgökmen)

Nathan wanted something more tangible from his studies than laboratory work, so he focused on applied sciences graduate programs. After sending out emails exploring possibilities, Nathan was happy when the Division of Applied Marine Physics chairman Dr. Brian Haus requested a copy of his résumé. “If I had contacted Dr. Haus the year after or the year before, you’d be talking to someone else right now,” Nathan says, “It was definitely a case of right place, right time.” Dr. Haus had recently started a project with CARTHE investigating coastal surface currents to improve oil transport predictions, which Nathan thought was a perfect match for his physics background and fieldwork interest.

His Work

Nathan studies the interaction between the atmosphere and the ocean, specifically wind and waves. His focus is on using capillary waves, sometimes called ripples or cat’s paw ripples, to identify potential oil slicks. Satellites are very sensitive to the presence of short-scale surface waves. These waves’ absence leads to distinct dark regions in the satellite radar imagery, which can affect operational spill response. When these short-scale waves exhibit less energy than expected, then it is likely that something on the surface is preventing wave formation. Nathan explains how surface oil could do that, “If you blow on water in a greasy pan, it’s much tougher to get ripples than in a pan of clean water; the presence of oil knocks out these capillary waves.”

Nathan programs the Aquadopp acoustic current sensor for data collection during a drifter test in Biscayne Bay. The drifters being evaluated included those used in the GLAD and SCOPE experiments and an experimental design to be used in future research. (Photo credit: Tamay Özgökmen)

Nathan programs the Aquadopp acoustic current sensor for data collection during a drifter test in Biscayne Bay. The drifters being evaluated included those used in the GLAD and SCOPE experiments and an experimental design to be used in future research. (Photo credit: Tamay Özgökmen)

Because wind can easily interfere with satellite measurements of short-scale waves, Nathan’s research aims to enhance the remote sensing of these waves. However, collecting in situ data on mere ripples is not easy. Traditional sensors, such as gauges and lasers, are useful for measuring larger waves but disturb the surface too much to efficiently measure capillaries. Instead, Nathan uses a small camera that is able to sense short-scale wave slopes without distorting their structure. Because the application was new, Nathan’s first responsibility was making it work, “Dr. Haus pointed to the camera and said, ‘read this paper and learn how to replicate their method with that camera.’” Nathan was successful, and now he and his colleagues conduct fieldwork without disturbing the water’s surface, a process he describes as “a unique blend of in situ and remote sensing.”

Nathan’s participation in CARTHE’s first major field experiment, the Grand Lagrangian Deployment (GLAD), helped him understand how his work fit into a much larger scientific endeavor. GLAD used hundreds of drifters to track ocean surface currents around the Deepwater Horizon site. Nathan initially felt that collection of wave data was merely a “barnacle on the hull” of this history-making experiment, but he came to understand that all parts of their observational fieldwork were important to CARTHE research, “I felt like I was part of something enormous.” Nathan made a unique contribution using his language-arts skills to create an engaging, real-time narrative for the GLAD blog.

Nathan played a key part in CARTHE’s second major field experiment, the Surfzone Coastal Oil Pathways Experiment (SCOPE), that used drifters, dye, and drones to track and measure forces that move waterborne objects or contaminants onshore. Nathan planned and executed his own experiment – including wiring the research vessel’s cabin, setting up the instruments, and programming the computer for data collection – which afforded him a great deal of responsibility and autonomy for a graduate student.

His Learning

Nathan solders customized expanded battery packs into SPOT GPS units aboard R/V F.G. Walton Smith to compensate for the extended transmission time required by the GLAD experiment. (Photo credit: Tamay Özgökmen)

Nathan solders customized expanded battery packs into SPOT GPS units aboard R/V F.G. Walton Smith to compensate for the extended transmission time required by the GLAD experiment. (Photo credit: Tamay Özgökmen)

When bringing together experts from many different fields, one can expect some difficulty avoiding a “Tower of Babel” scenario. However, Nathan explains that CARTHE members “go with the flow – pun intended – and that turns into some wonderful research collaborations. For example, I’d sit down during breaks and, by just casually chatting with people about their research, I’d make more progress on my own work than I’d made in a month! I’ve had some of my greatest breakthroughs this way.”

Nathan has also made some keen observations about professor-student interactions. “To undergrads, professors act more like lawyers: they never ask a question they can’t answer. Once you become a graduate student, that changes. You’re both discovering the science together.” Nathan believes treating students as colleagues prepares them for future networking. “Engaging your students is the best way to get them to collaborate outside of your bubble,” he says. “Experienced scientists aren’t afraid to contact a professor they know across the country, but for a twenty-something it’s a big deal.”

Nathan also gained a new perspective on collaboration and scientists’ adaptability by observing the immediate multi-consortia response to the Hercules rig blowout. He and fellow grad student Conor Smith led CARTHE’s drifter deployment for the Hercules response. Initially, Nathan had associated research with months and even years of planning. However, seeing such rapid response changed that. “Fast response isn’t typical for a scientist,” explains Nathan. “We started planning on Tuesday afternoon and by Saturday morning we were out on the water collecting data. For a scientist, that’s pretty good!”

His Future

Nathan stands next to the new Surge-Structure-Atmosphere Interaction (SUSTAIN) wind-wave tank at the Rosenstiel School of Marine and Atmospheric Science (RSMAS). The enclosed acrylic tank (measuring 2m x 6m x 18m) has twelve independent wave paddles and a fan capable of delivering Category 5-equivalent wind speeds, making it the most complete wind-wave tank in the world. While the tank is still undergoing minor construction, Nathan says that it will play a key role in his future research. (Photo credit: Tamay Özgökmen)

Nathan stands next to the new Surge-Structure-Atmosphere Interaction (SUSTAIN) wind-wave tank at the Rosenstiel School of Marine and Atmospheric Science (RSMAS). The enclosed acrylic tank (measuring 2m x 6m x 18m) has twelve independent wave paddles and a fan capable of delivering Category 5-equivalent wind speeds, making it the most complete wind-wave tank in the world. While the tank is still undergoing minor construction, Nathan says that it will play a key role in his future research. (Photo credit: Tamay Özgökmen)

Nathan is about half-way through his graduate work and wants to remain in academia either as a professor, his preference, or as a post-doc researcher. He would like to work in areas that combine disciplines, such as applied physics studying marine environments, and to “teach those who want to learn.”

Praise for Nathan

Dr. Haus describes Nathan as “an innovative and productive researcher.” Looking back on Nathan’s time with CARTHE, he says that watching Nathan collaborate and make connections with his fellow students has been an exciting experience. He also reflected on Nathan’s enthusiasm and creativity, saying, “I am often surprised by his ability to rapidly implement my suggestions and to take a small idea and grow it well beyond expectations. Nathan’s imaging work is opening up many avenues for fundamental air-sea interaction research.”

The GoMRI community embraces bright and dedicated students like Nathan Laxague and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals.

Visit the CARTHE website to learn more about their work.

This research was made possible in part by a grant from BP/The Gulf of Mexico Research Initiative (GoMRI) to theConsortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). The GoMRI is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

Grad Student Christiansen’s Preemptive Research Enhances Galveston Bay Spill Response

Dave Christiansen (left) and Garrett Kehoe (right) pose with their beloved but shambling boat trailer, which lost two of its four wheels during a data collection trip from Austin to Galveston Bay. (Photo credit: Matt Rayson)

Dave Christiansen (left) and Garrett Kehoe (right) pose with their beloved but shambling boat trailer, which lost two of its four wheels during a data collection trip from Austin to Galveston Bay. (Photo credit: Matt Rayson)

David Christiansen is dedicated to investigating water movement and using those findings to improve local water systems.

He got his start monitoring Galveston Bay’s complex flow patterns as a precautionary oil spill measure. Dave’s hard work has taught him innovative problem-solving and has been applied to real-world oil spill response.

Dave was an Engineering master’s student at the University of Texas at Austin and a GoMRI scholar with GISR. Now a municipal water systems planner, he reflects on his graduate research challenges and the recent applications that made it all worthwhile.

His Path

In high school, Dave took as many math classes as possible, partly because he actually enjoyed them but also because his “mom wouldn’t have it any other way.” After starting college, Dave realized the Computer Graphics Technology program didn’t allow him to use his passion for math enough. Feeling that civil engineering was a better match, Dave switched his major after just one semester at Purdue.

There, he discovered an interest in hydrological engineering, which concerns the flow and transportation of water, and became a research intern under Dr. Cary Troy, who studies environmental fluid mechanics in the Great Lakes. Dave enjoyed the work so much that he began considering graduate research. “With input from Dr. Troy, I emailed professors at various universities about my interest and somewhat-limited experience in the field. My main goal was conducting fieldwork and collecting data.”

Dave received a response from environmental and water resources engineer Dr. Ben R. Hodges with the University of Texas at Austin, who believed Dave was perfect for his GISR research creating more accurate Gulf of Mexico oil transport models. A single visit convinced Dave that studying the circulation of Gulf Coast bays was for him. He moved to Austin in January 2012 and began his master’s research collecting water velocity data.

His Work

Dave Christiansen navigates as Abby Tomasek documents their course and passing ships in Galveston Bay. The choppy water forced them to take extra care waterproofing electronic equipment. The pink towel covers a homemade waterproof laptop case, vented by the tubes seen wrapping around the windshield. (Photo credit: Garrett Kehoe)

Dave Christiansen navigates as Abby Tomasek documents their course and passing ships in Galveston Bay. The choppy water forced them to take extra care waterproofing electronic equipment. The pink towel covers a homemade waterproof laptop case, vented by the tubes seen wrapping around the windshield. (Photo credit: Garrett Kehoe)

Understanding how water moves can help predict the path and speed of spilled oil. To track the circulation patterns of Galveston Bay, Dave measured water velocity using an acoustic Doppler current profiler (ADCP), which bounces sonar pulses off of suspended microscopic particles in the water column and uses the Doppler Effect – the change in a wave’s frequency based on the proximity of the wave source and the observer – to measure their velocity. The GISR team aimed to describe the flow of the entire Bay, a massive goal that Dave called “absolutely petrifying.” However, when reviewing the collected data, he noticed an interesting flow pattern near a dredge spoil island adjacent to the Houston Shipping Channel and made it the focus of his master’s thesis. “I spent as much time fixing our data-collection boat as I did collecting the data itself,” he jokes. “But, in the end, we collected great data that helped calibrate Stanford’s Galveston Bay oil spill model in anticipation of future spills.”

That “future spill” became a reality in March 2014, when a punctured oil barge released about 168,000 gallons of oil into Galveston Bay. This spill demonstrated to Dave how important research like his can be, “Oil spills negatively affect many people and wildlife. If we can decrease that damage by improving response, then we are doing a great service.” Dave’s work initially involved collecting data from multiple bays along the Texas and Louisiana Gulf Coast; however, a lack of resources forced the team to focus solely on Galveston Bay.

His Learning

Conducting fieldwork taught Dave that although difficulties can be frustrating, they also make completing the task that much more satisfying and have made him a quick-thinker. “Equipment malfunctions happen with fieldwork, and when you’re on a small boat mid-bay, there aren’t many tools at your disposal,” says Dave. “But, I think any engineer would say those situations are the most interesting. We all secretly, or not-so-secretly, want to be MacGyver and be able to resolve unexpected complications under stressful conditions without the proper tools.”

Being a member of the GISR research group has allowed Dave to learn from other scientists. At the 2013 Gulf of Mexico Oil Spill and Ecosystem Science Conference, Dave heard discussions between the world’s top oceanographic modeling and data collection researchers, “I heard a lot of new terms that I wrote down and Googled later. I simply became more aware of the research other people were doing, which was very enlightening.”

Dave’s experiences have made him appreciate the people in his life even more. “I’m thankful for my professors, Dr. Troy and Dr. Hodges, for introducing me to such an interesting field and for my wife and family, who have been so supportive throughout my learning experience. GoMRI and GISR mean a lot to me for funding my research.”

His Future

Dave has since graduated with a Master’s of Science in Engineering. He currently lives in Austin and works for Freese and Nichols, Inc., a 500-employee civil engineering consulting firm where he conducts master planning for municipalities’ water distribution and wastewater collection systems. Dave believes that the dwindling water supply in Texas is a problem that must be addressed with innovative engineering very soon, a problem he wants to help solve.

Praise for David

Dr. Hodges praises Dave’s dedication and persistence in the face of setbacks. Much of Dave’s time was spent gathering velocity via ADCP, a challenging yet essential task that often meant transecting the shipping channel for hours under some very tough conditions. Hodges said, “Dave was amazingly resilient and showed great ingenuity when things went wrong, persevering despite instrument failures and software glitches.” He also praised Dave’s “excellent” job conducting and teaching fieldwork. “It was great having a graduate student that I could just hand a field project to, say ‘go do it,’ and know it would get done.”

The GoMRI community embraces bright and dedicated students like David Christiansen and their important contributions. The GoMRI Scholars Program recognizes graduate students whose work focuses on GoMRI-funded projects and builds community for the next generation of ocean science professionals.

Visit the GISR website to learn more about their work.

************

This research was made possible in part by a grant from BP/The Gulf of Mexico Research Initiative (GoMRI) to the Gulf Integrated Spill Research Consortium (GISR). The GoMRI is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

NBA Player Makes Science the Star for Miami Youth

CARTHE_NBAJones_2305a

James Jones of the Miami Heat, along with the University of Miami mascot, sits with the Crew 22 camp kids at the opening ceremony. (Photo provided by CARTHE)

NBA Champion James Jones took the stage for young fans this July, but not to talk about sports. Instead, his goal was to get kids excited about cutting-edge science happening in their home town.

Over 40 kids participated in his week-long Crew 22 Training Camp hosted by the University of Miami Rosenstiel School of Marine & Atmospheric Science.

Jones and his wife Destiny started the James Jones Legacy Foundation to reach under-served youth in Miami. Growing up in the inner city, Miami native Jones wants kids in tough circumstances to know they have more options than they realize, saying, “We believe that allowing young people an opportunity to experience a college setting as part of our programming has the potential to transform the lives of these children.”

CARTHE_NBAJones_2305b

Professor Josefina Olascoaga assists camp kids in simulating the effect of the Earth’s spinning on currents by using a rotating tank and dye. (Photo provided by CARTHE)

After warming up the crowd with upbeat music, friendly banter, and just a little basketball talk, Jones let the kids see a different side of him. “I was a finance major in college and an academic all American,” he said, “I used basketball to get an education, but I’m not just a basketball player.”

Jones encouraged the kids to make friends with the science mentors, learn something new, and get outside their comfort zone. Then, he turned the program over to the enthusiastic CARTHE team and joined the group to learn right alongside them.

 

 

CARTHE_NBAJones_2305c

CARTHE Outreach Manager Laura Bracken teaches the group about the Deepwater Horizon oil spill and the importance of understanding how oil moves in the ocean. (Photo provided by CARTHE)

Laura Bracken, the CARTHE Outreach Manager, opened with the video “Bob the Drifter,” an animated depiction of their high-tech tracking devices that go with the flow of ocean currents, helping scientists understand how things move in water. She gave the example of the rubber ducks that, to this day, land in different parts of the world after a container full of them fell from a cargo ship in 1997. Professor Josefina Olascoaga, a physical oceanographer with CARTHE, asked the kids what they thought caused currents, getting answers like “wind,” “rain,” and “animals.” Using a rotating tank, she and post-doc Guillaume Novelli helped them see how the Earth’s spinning affects currents by adding dyes and watching swirling eddies form, taking the dyes in different directions.

CARTHE_NBAJones_2305d

Campers watch as an airborne drone equipped with cameras is remotely maneuvered to capture images of them boarding the shark-tagging research vessel. (Photo provided by CARTHE)

Now, the team had the opening to relate currents and the oil spill. Bracken asked how many of them knew about the 2010 Deepwater Horizon oil spill. Only two raised their hands. The team explained what happened and how they were using science – and really cool equipment – to answer questions about how oil moves in the ocean. The kids got to see drifters and drones that CARTHE used in the GLAD and SCOPE experiments to understand surface currents in deep and in near-shore waters.

The week’s high-interest activities included a toad fish lab, a wave tank, sea slugs, corals, an aquarium, and aviation. A highlight of the program was a day spent catching and tagging sharks. Jones, who joined the kids every day, said he loved being able to expose them to things most people only see on television. “A lot of them thought this would be something similar to going to the zoo or the Seaquarium, but they’re actually out here baiting lines and taking blood and tagging sharks,” said Jones. “It’s something you see on Discovery Channel but rarely get a chance to do in person.”

CARTHE_NBAJones_2305e

A drone’s perspective of the Jones Crew 22 campers as they gather to board a research vessel and tag sharks. (Photo provided by CARTHE)

CARTHE Director Tamay Özgökmen explained that, given the constant electronic distractions of our ADD world, outreach programs must be creative to bring science to the masses. He believes partnering with celebrities, such as sports stars and musicians, to host educational events provides an avenue to introduce new concepts when people are relaxed and open to ideas that might not ordinarily interest them. For this reason, CARTHE participated in the Tortugas Music Festival in April, where they spoke directly with over 500 individuals and brought scientific discovery to thousands. They hope to expand their reach to non-college audiences through films and other visual/audio media.

 

CARTHE_NBAJones_2305f

The CARTHE team chats with James Jones about the amazing experiences that the Crew 22 kids had during their week-long science camp. From L-R: CARTHE Outreach Manager Laura Bracken, post-doc Guillaume Novelli, Miami Heat Forward James Jones, CARTHE Director and Professor Tamay Ozgokmen, and Professor Josefina Olascoaga. (Photo provided by CARTHE)

And, partnering with the Jones Crew 22 camp has done just that. “I’ve always taken pride in finding new experiences,” said Jones. From the opening ceremony, where he got kids cheering and dancing, to the camp’s end, where he learned as their peer, Jones made science fun. Now, while most of these kids can say that Jones wears a size 16 shoe, they might also be able to tell their friends where the loop current goes, how currents move oil, or what it’s like reeling in a five-foot shark. For Jones and the CARTHE team, that means the week was a success.

Visit the CARTHE website for more information.

 

 

************

This research was made possible in part by grants from BP/The Gulf of Mexico Research Initiative (GoMRI) to the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). The GoMRI is a 10-year independent research program established to study the effect, and the potential associated impact, of hydrocarbon releases on the environment and public health, as well as to develop improved spill mitigation, oil detection, characterization and remediation technologies. An independent and academic 20-member Research Board makes the funding and research direction decisions to ensure the intellectual quality, effectiveness and academic independence of the GoMRI research. All research data, findings and publications will be made publicly available. The program was established through a $500 million financial commitment from BP. For more information, visit www.gulfresearchinitiative.org.

Class Project: What Drives Ocean Currents?

gulf_stream_currentsA Hands-On Activity for Children Ages 10-14

An ocean current is the movement of water in the ocean. Oceanic currents are driven by tides, winds, and differences in water density. Density is defined as the number of things, in this instance, molecules, in a certain area. Water density is affected by the number of salt molecules it contains, as well as by other substances such as sediments, oil, etc. The higher the salinity (salt content) of the water, the greater the density of the water, thus it stands to reason that freshwater will have a lower density than saltwater. Temperature also affects the density of water as molecules become more densely packed in colder environments. All of these variables have the potential to affect ocean currents by changing the composition of
the ocean and can even reverse the direction of currents.

For more information see the following NOAA tutorial:
http://oceanservice.noaa.gov/education/tutorial_currents/

Click to download PDF ( 71 KB).

Video: Gary Finch Outdoors CARTHE Drifters Field Trip

Gary Finch Outdoors CARTHE Drifters Field TripScientists from the University of Miami have been visiting our area for the last three weeks studying the movements of ocean currents along the coast in order to observe how they carry oil, fish larvae or toxins in the water.

On this particular day, 7th grade science students from Episcopal Day School in Pensacola were able to see, first hand, the variety of advanced instruments the scientists use to collect visual data of the movement of currents, including GPS equipped drifters, unmanned aerial vehicles and dye sensors.

Video: Bob the Drifter – A Waterlust Film about Ocean Currents

Researchers studying the movement of ocean flows use a variety of tools and technologies to collect accurate data. Drifters are tools that report their location, speed, and in some cases water conditions as they are carried by ocean currents. The data collects by drifters can help improve models that predict the movement of objects or substances in the ocean, such as marine larvae, spilled oil, and people lost at sea.

Scientists working with the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) teamed up with outreach and media specialists and created the animated story “Bob the Drifter” using simple language and pictures to explain their research.

Bob is specially designed to drift with the surface currents and is equipped with a GPS unit so CARTHE scientists can track where he goes and how fast he is moving. In the video, follow Bob as he moves throughout the Gulf of Mexico, providing information to scientists so they can predict where pollutants, people, and larval lobster may go based on how the ocean currents are moving.

To learn more about CARTHE research, please visit CARTHE.org.

The CARTHE team is based at the University of Miami Rosenstiel School of Marine & Atmospheric Science and is funded by the Gulf of Mexico Research Initiative (GoMRI).

To learn more about Waterlust, visit waterlust.org, or find us on Facebook at facebook.com/waterlustproject
Link to video: http://www.youtube.com/watch?v=gysyr2lqwFs